cantilevers the distance between the end and the support does not exceed the lesser of $25 b_{c}$ and $100 b_{c}^{2} / d$, where b_{c} is the width of the compression face midway between restraints and d is the effective depth.

10.2.3 Design equations

Considering a rectangular cross-section subjected to bending and using the assumptions listed above the basic equations required for design can be derived as follows.

In Fig. 10.5 the strain distribution shows that the steel has reached yield strain and the maximum masonry strain is less than the ultimate value (assumption 7). Also the stress in the compressive zone is constant at $f_{\mathrm{k}} / \gamma_{\mathrm{mm}}$ (stress-strain relationship for masonry).

Taking moments about the centroid of the compression block gives the design moment of resistance M_{d}

$$
\begin{equation*}
M_{\mathrm{d}}=A_{\mathrm{s}} z f_{\mathrm{y}} / \gamma_{\mathrm{ms}}^{\prime} \tag{10.1}
\end{equation*}
$$

where

$$
\begin{equation*}
z=\left(d-d_{c} / 2\right) \tag{10.2}
\end{equation*}
$$

Equating the total tensile force to the total compressive force gives

$$
A_{\mathrm{s}} f_{\mathrm{y}} / \gamma_{\mathrm{ims}}=b d_{\mathrm{c}} f_{\mathrm{k}} / \hat{\gamma}_{\mathrm{mm}}
$$

so that

$$
\begin{equation*}
d_{\mathrm{c}} / d=A_{\mathrm{s}} f_{\mathrm{y}} \because_{\mathrm{mm}} / b d f_{\mathrm{k}} \hat{i}_{\mathrm{ms}} \tag{10.3}
\end{equation*}
$$

Substituting (10.3) into (10.2) gives

$$
\begin{equation*}
z=d\left(1-0.5 A_{\mathrm{s}} f_{y} i_{\mathrm{mm}}^{\prime} / b d f_{\mathrm{k}} \hat{i}_{\mathrm{ms}}^{\prime}\right) \tag{10.4}
\end{equation*}
$$

Fig. 10.5 Strain and stress distribution in section.

The design of sections for bending only can be carried out using equations (10.1) and (10.4) although it would be necessary to solve a quadratic equation in A_{s} to determine the area of reinforcement. This is considered to be inconvenient and the British code includes tables and charts for the direct solution. An alternative method is shown in section 10.2.4.

The assumption of a limiting strain distribution as shown in Fig. 10.4 imposes an upper bound to the value of M_{d}. Theoretically this limit can be determined from the ratio

$$
d_{c} / d=\varepsilon_{u} /\left(\varepsilon_{u}+\varepsilon_{y}\right)
$$

which is dependent on the maximum strain ε_{u} (taken as 0.0035 in the code) and ε_{y} (which is dependent on the type of steel). It can be shown that the theoretical limiting value of $M_{d} / b d^{2}$ for the assumed stress-strain distribution is given approximately by

$$
\begin{equation*}
M_{\mathrm{d}} / b d^{2}=0.4 f_{\mathrm{k}} / \gamma_{\mathrm{mm}} \tag{10.5}
\end{equation*}
$$

Adoption of this limit precludes brittle failure of the beam.

10.2.4 Design aid

Equations (10.1), (10.4) and (10.5) can be represented graphically, as shown in Figs 10.6 and 10.7 for particular values of $f_{\mathrm{k}}, \gamma_{\mathrm{mm}}$ and γ_{ms}. The graphs relate the three parameters $M_{d} / b d^{2}, f_{\mathrm{k}}$ and ρ so that given any two the third can be determined directly from the graph. The steel ratio ρ is equal to $A_{\mathrm{s}} / b d$.

Fig. 10.6 Design aid for bending $\left(f_{y}=250 \mathrm{~N} / \mathrm{mm}^{2}\right)$.

